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1. Introduction

The accuracy of retrieved profiles of greenhouse gases such as CO, and CH,
depends on the accuracy of the radiative transfer model used in the retrieval.
Uncertainties in spectroscopic line parameters and continua are the primary
limitations on the accuracy of molecular absorption in radiative transfer models,
and so reducing these uncertainties is critical to ensuring future scientific
progress. As part of our work with the TES instrument, AER regularly examines
and validates potential spectroscopic improvements for inclusion in the forward
model of the TES retrieval algorithm.

Here we present the results of several validation studies of recent
updates to the spectroscopic parameters for CO, and CH, in AER’s line-by-
line radiative transfer model LBLRTM against measurements from the
Trop heric E ion Spectr ter (TES) made during the HIAPER Pole-
to- Pole Observations (HIPPO) of Carbon Cycle and Greenhouse Gases
Study and a global dataset of near-nadir measurements from the Infrared
Atmospheric Sounding Instrument (IASI). We focus on the spectral residuals in
the main thermal infrared bands of CH, and CO,.

2. LBLRTM is an accurate and flexible radiative transfer model that is the basis of the
forward model for a number of satellite programs, including TES and IASI.

LBLRTM v12.1 with AER v3.1 line parameters (released November 2011, rtweb.aer.com)
Spectroscopy based on HITRAN 2008 (Rothman et al., 2009) along with:
© HO

o Line positions and intensities (10-2500 cm): Coudert et al. (2008).
o Air-broadened half-widths, temp. dep. and pressure shifts (350-667 cm): Delamere ef al. (2010).
- co,
o Lamouroux et al. (2010) first order line coupling parameters (P-,Q-, and R-branches).
o Line intensities and positions (597-2500 cm) from the Carbon Dioxide Spectral Database (CDSD)
 (Tsrkun ot al. 2003; Flaud of . 2003).

H\TRAN 2008 with first-order line coupling for v, and v, bands (Tran et al., 2006).
'MT_CKD v2.5.2 Continuum
“Updates to CO, and self-broadened H,0 in the 2400 cm! region (Mlawer et al., 2012),
LBLRTM v11.3 with TES v1.4 line parameters (released November 2007)
Spectroscopy based on HITRAN 2000 (Rothman et al., 2003) along with:
H,0 from HITRAN 2006 updates.
+  CO,P-, Q- and R-branch line coupling based on Niro et al. (2005).
- CH, (922.65-1678.33 cm™") and CO supplied by Linda Brown of JPL.
0, from Wagner et al., 2002
MT_CKD v2.0 Continuum

LBLRTM v9.4+ with AER v1.0 line parameters (released January 2005)

As in LBLRTM v11.3 with TES v1.4 except CO, Q-branch line coupling only and MT_CKD v1.2 Continuum

3. Methods

TES is a Fourier Transform Spectrometer (FTS) aboard the NASA Aura polar orbiting

satellite. Spectral range 650-1325 cm~" and 1900-2250 cm, 0.06 cm™" resolution, footprint

of 5.3x8.3 km.

IASl is a FTS aboard the MetOp-A polar orbiting satellite. Spectral range 6452760 cm™",

0.5 cm~" resolution, footprint of ~18 km, swath of ~2400 km.

a) TES-HIPPO forward model (FM) study
We use TES spectra measured during the HIPPO | campaign (Jan. 2009) that are
nearly coincident with the aircraft. We use the observed aircraft profiles of CO, and
CH, (supplied by the HIPPO science team, S. Wofsy, lead Pl) and examine the
forward model residuals using different line parameters.

b) TES-HIPPO retrieval study
We use spectra measured by TES during the HIPPO | and Il campaigns. We
performed retrievals of temperature, H,0, CO,, HDO, N,O, CH,, cloud OD, and
surface emissivity using different line parameters.

c) IASI retrieval study
We use a subset of the spectra from Matricardi, 2009. These are clear-sky,
nighttime, ocean profiles. We performed retrievals of temperature, H,0, O,, CO, and
CH,. A priori profiles are from ECMWF model or TES climatology
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Left: Mean residuals for 6 scans over ocean with cloud OD < 0.1.
Below: Mean differences between LBL runs using the TES v1.4,
AER v3.1, and AER v3.1 minus CDSD line parameters.

Using the CDSD positions and strengths included in LBLRTM
v12.1 (and AER v3.1) increases the RMS of the mean forward
model residuals in the CO, v, band.
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5. Preliminary TES-HIPPO FM Results: CH, and N,O
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The addition of P- and R-branch line coupling to

improved the spectroscopy on either side of the CO, Q-branch at

720 cm'. The major remaining residual features

are negative residuals in the 667 and 720 cm™' Q-branches and

positive residuals between 750-770 cm-'.
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In LBLRTM v9 4+ there were sngmflcant residuals
near the v, bandhead after the v, band temperature
retrieval. Recent updates to the MT_CKD continuum
included in LBLRTM v12.1 have dramatically
improved the model performance in this region.
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Itis not clear if the CH, spectroscopic updates have improved the
Iresiduals. While the mean residual is now closer to 0, the RMS is
arger.

The retrieved CH, profiles (not shown) have a clear high bias,
suggesting that spectroscoplc errors remain in this region.

parameters.

The LBLRTM v12.1 CH, spectroscopy is not a
clear improvement over that in the TES v1.4 line
parameters or LBLRTM v9.4+. Strong residual
features remain between 1295-1301 cm,

suggesting further spectroscopic work is needed.
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